Lovastatin enhances ecto-5'-nucleotidase activity and cell surface expression in endothelial cells: implication of rho-family GTPases.
نویسندگان
چکیده
Extracellular adenosine production by the GPI-anchored Ecto-5'-Nucleotidase (Ecto-5'-Nu) plays an important role in the cardiovascular system, notably in defense against hypoxia. It has been previously suggested that HMG-CoA reductase inhibitors (HRIs) could potentiate the hypoxic stimulation of Ecto-5'Nu in myocardial ischemia. In order to elucidate the mechanism of Ecto-5'-Nu stimulation by HRIs, Ecto-5'-Nu activity and expression were determined in an aortic endothelial cell line (SVAREC) incubated with lovastatin. Lovastatin enhanced Ecto-5'-Nu activity in a dose-dependent manner. This increase was not supported by de novo synthesis of the enzyme because neither the mRNA content nor the total amount of the protein were modified by lovastatin. By contrast, lovastatin enhanced cell surface expression of Ecto-5'-Nu and decreased endocytosis of Ecto-5'-Nu, as evidenced by immunostaining. This effect appeared unrelated to modifications of cholesterol content or Ecto-5'-Nu association with detergent-resistant membranes. The effect of lovastatin was reversed by mevalonate, the substrate of HMG-CoA reductase, by its isoprenoid derivative, geranyl-geranyl pyrophosphate, and by cytotoxic necrotizing factor, an activator of Rho-GTPases. Stimulation of Ecto-5'-Nu by lovastatin enhanced the inhibition of platelet aggregation induced by endothelial cells. In conclusion, lovastatin enhances Ecto-5'-Nu activity and membrane expression in endothelial cells. This effect seems independent of lowering cholesterol content but could be supported by an inhibition of Ecto-5'-Nu endocytosis through a decrease of Rho-GTPases isoprenylation.
منابع مشابه
Hypoxia enhances Ecto-5'-Nucleotidase activity and cell surface expression in endothelial cells: role of membrane lipids.
Extracellular adenosine production by the glycosyl-phosphatidyl-inositol-anchored Ecto-5'-Nucleotidase plays an important role in the defense against hypoxia, particularly in the intravascular space. The present study was designed in order to elucidate the mechanisms underlying hypoxia-induced stimulation of Ecto-5'-Nucleotidase in endothelial cells. For this purpose, aortic endothelial cells (...
متن کاملThe Volatile Anesthetic Isoflurane Increases Endothelial Adenosine Generation via Microparticle Ecto-5′-Nucleotidase (CD73) Release
Endothelial dysfunction is common in acute and chronic organ injury. Isoflurane is a widely used halogenated volatile anesthetic during the perioperative period and protects against endothelial cell death and inflammation. In this study, we tested whether isoflurane induces endothelial ecto-5'-nucleotidase (CD73) and cytoprotective adenosine generation to protect against endothelial cell injury...
متن کاملIonizing radiation-induced E-selectin gene expression and tumor cell adhesion is inhibited by lovastatin and all-trans retinoic acid.
E-selectin mediated tumor cell adhesion plays an important role in metastasis. Here we show that ionizing radiation (IR) induces E-selectin gene and protein expression in human endothelial cells at therapeutically relevant dose level. E-selectin expression is accompanied by an increase in the adhesion of human colon carcinoma cells to primary human umbilical vein endothelial cells (HUVEC). The ...
متن کاملConcanavalin A inhibition of ecto-5'-nucleotidase of intact cultured C6 glioma cells.
A pronounced effect of concanavalin A (Con A) upon activity of ecto-5'-nucleotidase of intact C6 glioma cells in culture has been demonstrated. A near linear rate of decrease in 5'-nucleotidase activity was observed upon treatment with concentrations of Con A up to 0.25 muM. Nonspecific phosphatase activity and Ca2+-dependent ATPase activity were not inhibited by Con A treatment of the cells. O...
متن کاملThe mononucleotide-dependent, nonantisense mechanism of action of phosphodiester and phosphorothioate oligonucleotides depends upon the activity of an ecto-5'-nucleotidase.
Many reports indicate different nonantisense yet sequence-specific effects of antisense phosphorothioate oligonucleotides. Products of enzymatic degradation of the oligonucleotides can also influence cell proliferation. The cytotoxic effects of deoxyribonucleoside-5'-phosphates (dNMPs) and their 5'-phosphorothioate analogs, deoxyribonucleoside-5'-monophosphorothioates (dNMPSs) on 4 human cell t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 90 4 شماره
صفحات -
تاریخ انتشار 2002